## Vector Fields European User Group Oxford 2002

# "Application of Opera to modelling NMR magnet systems"

Peter Aptaker Laplacian Limited Abingdon or

### The openGarfield Magnet

Or

"Watching paint dry"

(Prize for first to guess why?)

#### 1 Laplacian Limited

#### 1.1 Company Background

Laplacian was formed to exploit the founders 28 years in magnet technology especially 17 at the forefront of modelling and design in NMR systems.

#### 1.2 Business Areas

- High technology magnet designs, consultancy and small scale production
- NMR systems especially gradients, shims and magnets
- Niche magnets (e.g. Garfield magnet)
- Specialist data processing and analysis (e.g. NMR related Inverse Problems)
- Analytical solutions
- Vector Fields parameterisation, interfacing (e.g. Excel) and optimisation

#### 2 This talk

Brief overview of 18 months (?) applying Modeller to NMR magnet systems

- Mainly on the openGarfield magnet
- **Brief** overview of Modeller for NMR

... there will be no time for

• Leo: Laplacian Excel Opera interface (4-post magnet example)

#### 3 Strafi Background

Strafi (Stray-field) Imaging performing NMR experiments in the fringe field beyond the end of (homogenous) super-conducting magnets where there is both a high gradient and significant field.

It is useful for specialist thin film NMR e.g.

- In use effectiveness of solvent-borne coatings
- Curing (e.g. wood)
- Applications can monitor diffusion and profile T1 and T2 with over depth and time

## 4 Garfield background

(Prize if you can guess the acronym!?)

| 1997 | Conceived by Paul Glover and Peter McDonald (at University of Surrey): Garfield is a permanent magnet designed to offer all the features of Strafi (and more) and lower cost.                    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1997 | First Garfield designed by P.S. Aptaker at Resonance Instruments                                                                                                                                 |
| 1999 | see "A Novel high-gradient permanent magnet for the profiling of planar films and coatings", P.M. Glover, P.S.Aptaker, J.R. Bowler, E. Ciampi and P.J. McDonald", J. Mag. Res, 139, 90-97 (1999) |
| 2002 | Latest openGarfield designed by P.S. Aptaker at Laplacian                                                                                                                                        |

#### 5 Strafi and Garfield Configuration

Two possible geometrical configurations of relative directions of static field  $(B_0)$ , gradient (G) and RF field  $(B_1)$ . Note  $B_0$  and  $B_1$  are always orthogonal.



#### **6 Garfield Original Specification**

- A simple permanent magnet system (no running costs, plugs into standard bench-top spectrometer)
- "large" useable volume and access
- A horizontal field of typically .8T (c 30MHz)
- A deliberate gradient (e.g. 20 T/m)
- As uniform |B| in plane as possible (This will produce an profile/ image which is not spatially distorted, essential for imaging thin films)

#### 7 The Garfield Solution

Uniform |B| in plane?

- This is natural solution to Laplace's equation in Cartesian coordinates
- The pole profile should follow from the lines of constant equipotential

#### 8 Pole equipotential equations 1

The Cartesian solution of Laplace's equations gives a scalar potential

$$\phi(z, y) = a\sin(bz)\exp(-by)$$

and magnetic fields

$$B_z = \frac{\partial \phi}{\partial z} = ab\cos(bz)\exp(-by)$$

$$B_{y} = \frac{\partial \phi}{\partial y} = -ab\cos(bz)\exp(-by)$$

## 9 Pole equipotential equations 2

The field modulus becomes a function only of height y

$$B \models ab \exp(-by)$$

thus producing non-spatially distorted images despite the extreme curvature of the field.

The wave-factor *b* defines the gradient to field ratio

$$\frac{G}{|B|} = -b$$

With  $\,\mathcal{W}\,$  is the chosen operating clearance gap, the pole profile is on a chosen equipotential

$$z(y) = \pm \frac{\sin^{-1}(\sin(bw/2)\exp(by))}{b}$$

## 10 Special resolution error

With the field modulus

$$B \models ab \exp(-by)$$

the derivative is simply

$$\frac{d |B|}{dy} = -b |B|$$

If there is a field error  $\Delta B$  this will correspond to a special resolution error of

$$\Delta y = \frac{\Delta B}{b \mid B \mid}$$

E.g.  $b = G/|B| = 17 \, m^{-1}$  gives  $1/b = .06 \, m$ 

## 11 Equipotentials of $\phi(z, y) = a \sin(bz) \exp(-by)$

Note: This is NOT the potential of the magnetostatic problem on Opera2D.



## 12 Equipotential of $\phi(z, y) = a \sin(bz) \exp(-by)$ and |B|





## 13 The curvature of flux (Vector potential)





## **14 Original Garfield Magnet**

#### Summary

- Working field >30 MHz (0.7T)
- G/|B| = 20 T/m
- Clearance >20 mm
- Magnet circuit = closed

#### Opera model (Pre-processor)



#### 15 Original Garfield Conclusions

#### Design

- Modelled successfully in Opera2D (paramerised command file)
- Modelled successfully in Tosca (utilising JS written command files)

#### Implementation

- Built and tested successfully (1998?)
- Within customer resolution specified resolution of 50  $\mu m$
- In almost constant use at University of Surrey since then

## 16 OpenGarfield

Main changes requested included:

- 150% scaling
- Open access (e.g. C-core)

## 17 Opportunities to outsource and save money?



| Product Name:   | Garfield Magnet 2 |
|-----------------|-------------------|
| Our Price:      | \$3.50            |
| Availability:   | In Stock          |
| Product Number: | 44022-2           |
| Product Weight: | 0.5 lb.           |
| Rating:         | 大大大大ゴ             |

Buy it

## **18 Open Garfield Magnet**

#### Summary

- Designed and supplied by Laplacian Limited
- Working field 30 MHz
- 150% scaling
- G/|B| = 16.6 T/m
- Clearance >30 mm
- Magnet circuit = Open



#### 19 Modeller Mesh

Grading with AIR BLOCKS with different LEVELS and mesh length



## 20 An access hole is easily incorporated



## 21 Modeller |B| and resolution error as function of height (y): Fields Integral and Nodal (dashed)



## 22 Modeller resolution error as function of (a) x and (b) z : Fields Integral and Nodal (dashed)



#### 23 openGarfield magnet: Conclusions

#### Modeller?

- Modeller facilitated (relatively) easy parameterisation (.COMI files)
- Annoying not (yet) having extrusion (an experienced user may be happier with old preprocessor and hex elements)
- Required Field accuracy was easily maintained (INTEGRAL useful)
- Some meshing problems due to extremes of mesh size

The magnet built successfully e.g.

- Assembly forces were not way out (no injuries)
- Fields were as expected
- Customer will begin experiments ASAP

#### Proud builder!



Application of Opera to modelling NMR magnet systems"

#### 24 Proud user!



## 25 Issues with Modeller for NMR magnet systems?

| Garfield | Bench-top<br>permanent<br>magnets | Bench-top<br>NMR probes                          | NMR<br>gradients                                             | Shielding                                                             |
|----------|-----------------------------------|--------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|
|          | V                                 |                                                  |                                                              |                                                                       |
| Tosca    | Tosca                             | Elektra                                          | Elektra                                                      | Tosca                                                                 |
|          |                                   |                                                  |                                                              |                                                                       |
|          |                                   | ***                                              |                                                              | ***                                                                   |
| *        | *                                 |                                                  | *                                                            |                                                                       |
| ****     | ***                               |                                                  |                                                              |                                                                       |
| **       | ***                               |                                                  |                                                              |                                                                       |
|          |                                   | ***                                              | ***                                                          |                                                                       |
| ?        | ?                                 | ?                                                | ?                                                            | ?                                                                     |
|          | Tosca                             | Tosca Tosca  *  *  ****  ****  ***  ***  ***  ** | Tosca Tosca Elektra  ****  * ***  * ***  * ***  * ***  * *** | Tosca Tosca Elektra Elektra  ****  ****  ****  ****  ****  ****  **** |

## 26 Accuracy of Opera

User perception?

| Program                      | Comment                                |
|------------------------------|----------------------------------------|
| Opera2D.                     | Most accurate if 2D approximation good |
| Opera3D Hexahedral elements  | Most accurate if 2D approximation bad  |
| Opera3D tetrahedral elements | Accuracy challenged?                   |

- Is this view of accuracy correct?
- With improvements in computing power will this perception change?

## 27 A long decade?

| VF European User Meeting | PSA (almost) annual "lecture"                                                                |  |  |
|--------------------------|----------------------------------------------------------------------------------------------|--|--|
| 1991? (Southampton):     | Begged for improvements to 3D pre-processor to facilitate parameterisation and optimisations |  |  |
| 1998 (Oxford):           | Presented Rio the Opera Interface: complained more about 3D pre-processor                    |  |  |
| 1999 (Eindhoven)         | PSA almost kept quiet                                                                        |  |  |
| 2000 (Lille):            | Modeller beta test offers simple 3D parameterisation                                         |  |  |
| 2002(Oxford):            | Modeller nearly two years on and Modeller fulfils wildest dreams                             |  |  |
|                          | soon                                                                                         |  |  |

#### 28 Opera wish list 2002

#### Modeller

- More reliable meshing especially thin regions
- Option for "Uniform" mesh (e.g. Legendre harmonics)
- Integration of tetrahedral and hex elements?
- Polygon Extrusion

#### General

 Improved Windows integration (ActiveX and .COM are "old hat", to be replaced by .NET) "Watching paint dry"

## 29 Appendices

#### 30 Skin studies example

With thanks to Paul Glover who supplied these extracts from:

"A high-gradient permanent magnet for Skin Magnetic Resonance Imaging"

P. Glover, M. Dias, J. Hadgraftt and P. McDonald

#### which discusses:

- Hydration
- States of water and its mobility (free and bound, T1, T2 and diffusion)
- Transport through skin
- Effect of creams (on rehydration or transport)
- Fluorinated (or labelled) drug transport

#### 31 Glover et al



#### 32 Glover et al



#### 33 Modeller meshing details

#### Mesh densities

```
*** COMMENT ******* /mesh length
*** CONTROL COMMAND ** $CONST
                                  \#mlsc 1.0*\#lsc
 #MLSC=0.0015
*** CONTROL COMMAND ** $CONST #ml_air0 #mlsc*0.5
 \#ML AIR0 = 7.5E - 04
*** CONTROL COMMAND ** $CONST #ml_air1 #mlsc*2
 #ML AIR1=0.003
*** CONTROL COMMAND ** $CONST #ml air2 #mlsc*8
#ML AIR2=0.012
*** CONTROL COMMAND ** $CONST #ml_air3 #mlsc*32
 #ML AIR3=0.048
*** CONTROL COMMAND ** $CONST #mlpole
                                      #mlsc*8
 #MLPOLE=0.012
*** CONTROL COMMAND ** $CONST #mlmag
                                        #mlsc*16
 #MLMAG=0.024
*** CONTROL COMMAND ** $CONST #mlframe #mlsc*32
 #MLFRAME=0.048
*** CONTROL COMMAND ** $CONST #mlbound #mlsc*128
 \#MI_BOUND=0.192
Mesh Details
** COMMENT ******* / -----
*** CONTROL COMMAND ** $if #mesh eq 1
**** FILE INPUT ***** model create
```

```
**** FILE INPUT *****
                       mesh size=#mlbound
Initial triangulation contained 2569 nodes.
Volume facets:
                   213
Element facets:
                 14236
**** FILE INPUT *****
                        fill
TOTAL volume: 0.105446008
Mesh quality (RMS): 1.035805905 (Worst): 2.05561E-04
TOTAL vertices:
                 23981
TOTAL elements: 135465
*** CONTROL COMMAND ** $end if
| Job Completed
                                            375.2 s cp, 6.9 m elapsed
```